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Abstract

When analyzing networks, there is rarely a
focus on the traffic that is explicitly generated
by users as opposed to traffic that is generated
without user intervention. As consumer com-
puting has grown more widespread, and the net-
work has grown to accommodate more and more
users, there are many more services which com-
municate with other devices in the network for
non-user induced reasons. This paper attempts
to take a high level look in a very narrow case to
see if there are any feature which distinguish pe-
riods of user-induced traffic from periods of non-
user-induced traffic. We assess 6 different candi-
date ”tells”, and find two tells that are heavily
related to and work as very good indicators for
the machine’s current usage status.

1 Introduction

Networks are, by their nature, interconnected
and interdependent systems of high complexity.
Devices can talk to each other over networks,
and can do so in ways that are not necessarily
user generated. In an age of cloud computing
and big data, many devices and applications do
their computation on the cloud, rather than fully
on the device itself. Applications may seek to
talk to servers even when they are not in use or

collecting data. Applications frequently send in-
formation back to the server without the user
deliberately triggering that traffic. Messaging
applications such as Google Messages, Snapchat,
and Instagram all provide Read Receipts, which
notify the server that a message has been read,
even without the recipient of the message send-
ing anything in response. However, in this paper,
we primarily focus on the type of network traffic
that is created when applications generate traffic
without any user involvement.

This research question is, somewhat surpris-
ingly, rather underdeveloped. This is likely due
to three main reasons. First, the research ques-
tion isn’t asking about a specific phenomenon,
but rather investigating the possibility that a
phenomenon may exist. Second, reproducibil-
ity and generalizability are difficult to establish
due to the inherent uniqueness of every consumer
system. Finally, consumers are sensitive about
their data being potentially compromised. De-
spite these issues, this paper attempts to take
an initial, naive look at how devices create traf-
fic in the background, when a device is not in
use. This paper’s study is by no means com-
prehensive, but rather takes a broad look at 3
systems to analyze traffic that is generated. The
majority of the study was done on a consumer
Windows 10 machine. The device was left in
sleep mode for 10 days, while Wireshark was
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collecting traffic. The device’s traffic was then
measured again, while in use, specifically while
playing online games with friends. Traffic was
also measured on a mostly-unused Raspberry Pi
4 device, and on a Windows Server Virtual Ma-
chine, hosted on Azure, with no security policy.

The background traffic that we’re looking for
can take a number of different shapes depending
on the applications on the device. Many appli-
cations remain open in the background and send
traffic to the server periodically. Discord, for
example, notifies the server if a user has come
online or if they are idle. It also updates the
server if the user is playing any games or listen-
ing to music. Many applications check for up-
dates from a remote server as well. Future work
should extend this research toward many con-
sumer devices, and see how their behavior differs
depending on the applications installed or in use.
While there are ethical concerns with this kind
of surveillance, the author proposes(but has not
implemented) a script that would sufficiently re-
move sensitive data, by only using network layer
and transport layer packet headers.

When discussing this subject, it’s important
to avoid talking about ”user generated” packets.
Traffic generation is a spectrum, and describing
packets as generated by a user, instead of say-
ing something like ”induced by user behavior”,
doesn’t make it clear which category we’re dis-
cussing. A short list of categories

1. Traffic may be generated by a user fully.
This describes traceroute and other network
tools that are intended to generate specific
types of packets and traffic

2. Traffic may be generated by a user mostly.
The user intends to communicate to another
device on the network, but doesn’t specify

how exactly to do it. This is where we clas-
sify tools like web browsers.

3. Traffic may be generated by an application
that the user is interacting with. A user
may be playing chess in browser, for exam-
ple, and the users action makes a call to a
backend service.

4. Traffic may be generated by an application
without user interaction. This would in-
clude a notification about an incoming mes-
sage from Skype or Discord, for example.

5. Finally, traffic may be generated by an ap-
plication in a way that is fully insensitive to
user state. This would be things like analyt-
ics reports, heartbeats, as well as responses
to incoming messages.

In this study, our view of ”passive” traffic cap-
tures items 4 and 5 from the above list, and ”ac-
tive” traffic is intended to refers to items 1, 2,
and 3.

2 Data and Methodology

Data was collected with Wireshark[1], which
was configured during the capture periods to run
in the background at scheduled times.

2.1 Windows Client

A Windows Client machine was used for two
of the sets of measurements. The first measure-
ments, heretofore described as the passive mea-
surement dataset, encompass a 10-day long pe-
riod where the computer was not used at all. Un-
fortunately, it became impossible to work with
that much data on the cloud or on the machine
available to me; instead, I had to take a slice of
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that data. Since the measurement was continu-
ous and the machine remained unused, I expect
that this approach will still work. The second
dataset is the active measurement dataset. This
is a dataset from a period when the computer
was in use. Specifically, this is a time interval
when the network connection is in heavy use.
These measurements were taken during video
calls, and while playing online games. These are
not representative of all use cases; but it would
be difficult to create a representative dataset
that was representative of most use cases and
most machines, especially in the span of 14 weeks
and with only one machine actually being used.

2.2 Windows Server

A Windows server machine on Azure was left
operating with no firewall, and collected data for
5 hours, the maximum allowed time for packet
collection using azure’s tool.

Windows Server is a best attempt to get an
approximation of a ”ground truth” without ac-
quiring another bare metal, newly imaged Win-
dows machine. Windows server is lighter than
Windows 10. The expectation is that traffic on
the Windows 10 machine, both in periods of use
and when the machine is left running idly, would
look like a superset of the Windows Server ma-
chine’s traffic. The traffic on theWindows Server
machine should just be doing fairly rudimentary
Windows tasks, namely sending analytics data
to Microsoft, and polling for potential updates.
This collection is slightly complicated by the fact
that the machine is on Azure, and so it needs to
talk to Microsoft’s azure communication chan-
nel, 168.63.129.16.

As we will discuss in later sections, there are
some oddities with the Windows Server machine
due to the connection to Azure.

2.3 Raspberry Pi 4

The last set of data, labelled Pi, was taken
from a rarely used Raspberry Pi 4 machine run-
ning Raspberry Pi OS. This machine was left
on its own for 24 hours. It was connected to the
same wireless network as the Windows machines.

3 Tells

In order to determine if a period of traffic oc-
curred while the system was in use, it is neces-
sary to identify a number of ”Tells”. The goal of
these Tells is that they should, ideally, look dif-
ferent in an intuitive way if the machine is in use.
As such, going off of our initial assumption about
the Windows Server machine’s behavior being
a subset of the Passive behavior and the Ac-
tive behavior, we expect to see some consistency
when comparing the Windows Server dataset,
the Passive Dataset and the Active dataset to
each other.

3.1 Ports

As shown in Figure 1, the primary difference
between the Active and the Passive Dataset is
that there are a number of ports in the Active
dataset that are transmitting data in very low
frequencies. The Source Port seems to serve as
a good Tell for if the traffic occurred during a
period of use.

Figure 2 shows that Destination ports do not
serve nearly as well as one of these Tells. This
makes sense. A source machine can typically
send traffic from a nonconventional port, but a
server listening will typically be listening on a
reserved port.

Note: the reason for the high traffic to high
ports is due to Windows using high ports for fire-
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wall services. [2]

Figure 1: Percentage of Traffic that originated
from a given port

3.2 Protocols

(Results can be found in Table ??)

The dataset showed some interesting charac-
teristics with regard to the protocols being used.
First, the Pi was talking on MDNS constantly,
which explains some of the other results in this
paper. The Passive Dataset used TLSv1.2 and
QUIC as it’s two highest, with HTTP not even
placing. However, the Active dataset and the
Azure dataset both showed HTTP as being in
the top 10. This is likely due to the Windows
Server machine being on Azure, therefore using
some HTTP in order to communicate with the
rest of the Azure ecosystem. However, HTTP’s
presence in the Active dataset’s top 10 protocols
is noticeable. The absence of HTTP in the Pi
dataset also helps us determine that this is likely
caused by user interaction. A quick WHOIS
lookup helped determine that many outgoing

Figure 2: Percentage of Traffic that is set to ar-
rive, or has arrived, on a given port

HTTP packets were going to Akamai-owned IP
addresses.

3.3 Sources

Despite the usefulness of Source Ports as a
Tell, the dataset did not make source IPs seem to
be a very good Tell. Table 2 shows that there’s
far too much traffic even when the machine is
not in use that originates from outside the local
area network. Most, if not all, the Azure IPs
are owned by Azure. Our finding is that these
are simply too sensitive to each specific device’s
configuration, location, and local area network
in order to use source IP as a useful heuristic.

3.4 Destinations

Table 3 shows the top 20 Destination IPs for
each of the datasets. There’s nothing inherent
about these IP patterns that help us determine
any real information about the devices, unfortu-
nately.
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However, there is some information we may
use in both this set and the set of source IPs.
If instead of looking at the patterns, we look at
the IPs themselves, and do a WHOIS lookup, we
can start to paint a picture of what the device
is doing. For example, 18.208.4.124 is known to
me to by my ec2 instance, and 66.22.212.132 is
owned by Discord. Known information can help
slightly in identifying whether a user is using the
machine when the traffic is captured, although
it would be better to have an automated system
that can work off patterns, rather than requiring
knowledge that may become outdated or difficult
to acquire.

3.5 Packet Length

We initially theorized that by plotting Packet
Lengths, it would be possible to discern between
devices that were in use or not. This was based
on the assumption that, when the device is not in
use, it is merely sending packets of constant sizes
elsewhere. This assumption is based on the fifth
type of generated traffic, and might hold true
if that were the only type of traffic occuring in
passive periods. However, update notifications
must have a variable size inherently. Therefore,
this is an ineffective Tell for traditional consumer
devices, although for certain scenarios where no-
tification type traffic is not a concern, it may still
work effectively as a tell.

There is one odd thing about the data, as fig-
ure 3 shows us, that sets one of these data points
apart from the others. Devices on Azure talk to
a special node at 168.63.129.16[3] that connects
the virtual device to the Azure platform using
frame sizes far larger than Ethernet supports.
This virtual IP is responsible for managing the
connection between the VM and the Azure plat-
form as a whole; for example, the load balancer

Figure 3: The lengths of packets over a time
interval

and heartbeat are dependent on it.

3.6 Volume

The volume measurement was done by re-
ducing the data into buckets, and counting the
size of the buckets. Unsurprisingly, the volume
of packets increases pretty significantly moving
from the Azure dataset to . However, packet
traffic doesn’t always follow a consistent pattern.
To test if the volume is actually higher, we need
to use a statistical test, specifically the t-test.
Using scipy, we performed a t-test between the
Passive dataset and the active dataset. With a
p-value of −7.134 × 10−10, we can say that the
packets volume did in fact change, and pretty
significantly. The caveat here is that this may
depend on machine, and on what’s being done on
the machine. Additionally, a ttest will need to be
run every time; a brief instance of higher volume
isn’t enough to determine the machine is being
used by a human. Figure 4 shows the dramatic
difference, by orders of magnitude, between the
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Figure 4: Packets per second for the Azure
Instance, the Passive dataset, and the Active
dataset

3 windows machines; however, it’s impossible to
know if this will always hold true without testing
more machines.

4 Ethics

No data was anonymized for this study or in
this paper. However, given that no payloads are
in the data, there is no risk of any sensitive in-
formation being revealed.

More generally speaking, there are surveil-
lance concerns with developing methodologies
for determining whether a machine is actively
being used or not. In workplaces, it could lead
to employees having their privacy invaded, and
in other contexts, it could be used to, for ex-
ample, determine whether the inhabitants of a
house have left on vacation, and burglarize them.

That being said, understanding the proper-
ties of network traffic can help to prevent cyber
crimes. Being able to discern when a machine is

behaving in an atypical way can help to deter-
mine if that machine is compromised.

5 Future Work

The author of this paper sees a number of
ways to go forward from this study. Future work
should explore the development of a tool that
can be safely deployed and can gather necessary
information that people can feel safe having on
their devices. This degree of collection will en-
able a closer look at a more general pattern of
usage. There is also, undoubtedly, more informa-
tion to gather from the packets already collected.
An entire paper could likely be dedicated to ana-
lyzing how time-related aggregations change, us-
ing only the data already collected.

It may be possible to build off this method-
ology to improve Network Intrusion Detection
Systems; by knowing how a machine left passive
should behave, it should be easier to identify if
a machine has been compromised. The immense
volume of packets sent by modern machines can
make it difficult to process that data, but by fo-
cusing on the Tells that we’ve identified it could
be possible to identify compromised machines.

Finally, this paper is primarily focused on
Windows machines. The Raspberry Pi showed
findings that were somewhat unexpected, and it
could be worthwhile to do a study on Linux ma-
chines, server and client, similar to this study.

6 Conclusion

In this paper, we generated and analyzed
packet traces to see if there were properties we
could use to accurately guess whether the ma-
chine generating packets was in use, or was gen-
erating packets in the background. We found
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two features that are most telling in this regard.
First, we identified that a machine in use has the
presence of traffic on high ports, in a range that
falls below the firewall window of ports. Second,
we identified that packets are transmitted from a
machine in much greater volume if the machine is
being used. We also looked at a Windows server
machine and a Raspberry Pi machine. The Win-
dows Server machine had the least traffic of all
the devices, as expected, but gave us an insight
into how traffic patterns accumulate as systems
becomes more complex. The Raspberry Pi was
used as a bit of a baseline, something outside the
Windows ecosystem to compare to.
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Appendix

Passive Active Azure Pi

TLSv1.2 TCP TCP MDNS
QUIC UDP HTTP UDP
TCP TLSv1.2 NTP NBNS
UDP QUIC TLSv1.2 DB-LSP-DISC
NBNS SSDP DNS NBDS
DNS SSHv2 NBNS LLC

DB-LSP-DISC NBNS DHCPv6 TPLINK-SMARTHOME/JSON
MDNS HTTP ICMPv6
TLSv1 MDNS DNS
SMB IGMPv2 GVCP

Table 1: Top 10 Protocols used in each dataset
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Passive Active Azure Pi

172.20.111.188 172.20.111.188 10.0.0.4 172.19.3.193
172.20.14.32 66.22.212.132 168.63.129.16 172.19.12.232
172.217.1.97 185.107.192.26 169.254.169.254 172.19.11.74
142.250.190.46 13.107.238.35 168.61.215.74 172.19.0.6
129.22.4.31 35.244.180.134 40.87.160.0 172.19.14.206
52.85.72.195 172.20.14.32 13.107.4.50 172.19.0.219
172.20.8.233 104.22.24.231 40.87.172.0 172.19.11.198
172.20.11.241 142.250.191.225 20.189.173.9 172.19.5.251
172.217.4.195 66.22.212.131 20.209.1.1 172.19.5.63
172.20.7.207 66.22.231.56 40.119.46.46 172.19.2.240

162.159.130.234 172.20.6.112 fe80::f4c2:19de:d536:b6e2 172.19.12.181
146.75.76.237 18.154.227.57 13.107.12.50 172.19.10.173

162.159.135.234 140.82.112.3 40.80.44.0 172.19.13.220
66.194.187.21 8.251.206.254 51.132.193.104 172.19.15.11
172.217.1.106 8.240.200.126 20.42.73.27 172.19.9.114
146.75.76.238 129.22.4.31 20.189.173.15 172.19.14.81
23.220.140.149 104.26.15.184 40.79.189.58 172.19.3.68
142.250.191.99 162.159.135.232 20.44.10.122 172.19.3.24
142.250.191.206 172.20.46.155 104.46.162.226 172.19.3.64
142.250.190.69 172.20.0.6 104.46.162.224 172.19.8.48

Table 2: Top 20 Source IPs for each dataset
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Passive Active Azure Pi

172.20.111.188 172.20.111.188 168.63.129.16 224.0.0.251
172.20.15.255 239.255.255.250 10.0.0.4 172.19.15.255
129.22.4.31 172.20.15.255 169.254.169.254 255.255.255.255

142.250.190.46 185.107.192.26 168.61.215.74 ff02::1
255.255.255.255 66.22.212.132 10.0.0.255 172.19.109.55
172.217.1.97 104.22.24.231 13.107.4.50 208.67.220.220
172.217.4.195 224.0.0.251 20.189.173.9 ff02::fb
172.217.1.106 255.255.255.255 40.119.46.46 ff02::1:ff8d:e7f3

142.250.191.202 35.244.180.134 ff02::1:2 172.19.5.73
162.159.130.234 129.22.4.31 20.209.1.1 172.19.8.84
54.235.180.207 172.20.44.51 13.107.12.50 169.254.255.255
176.34.164.201 18.208.5.124 20.42.65.88 168.61.215.74
162.159.135.234 129.22.104.25 104.46.162.224 208.67.222.222
224.0.0.251 66.22.231.56 104.46.162.226 129.22.106.20

142.250.191.99 66.22.212.131 20.44.10.122 172.19.49.161
142.250.191.142 162.159.136.234 51.132.193.104 129.22.8.20
142.250.190.69 13.107.238.35 40.79.189.58 172.19.60.0
3.211.37.212 224.0.0.1 20.189.173.15 172.19.47.136

100.25.231.167 3.220.159.105 20.42.73.27 ff02::16
52.44.223.164 142.250.191.225 40.119.249.228 ff02::2

Table 3: Top 20 Destination IPs
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